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Exact, convergent periodic-orbit expansions of individual energy eigenvalues
of regular quantum graphs

R. Blümel, Y. Dabaghian, and R. V. Jensen
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We present exact, explicit, convergent periodic-orbit expansions for individual energy levels of regular
quantum graphs in the paper. One simple application is the energy levels of a particle in a piecewise constant
potential. Since the classical ray trajectories~including ray splitting! in such systems are strongly chaotic, this
result provides an explicit quantization of a classically chaotic system.
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I. INTRODUCTION

Within the framework of semiclassical periodic-orb
theory the quantization procedures for integrable and cha
systems differ substantially. An integrable system may
quantized using the Einstein-Brillouin-Keller theory@1#. The
set of integrals

I i5E
Ci

pmdqm5h~ni1m i !, i 51, . . . ,N, ~1!

extended along theN fundamental cyclesCi of the
N-dimensional phase-space tori yield the~semiclassical!
quantization conditions for every action variableI i . Here the
ni ’s are integer quantum numbers and them i ’s are Maslov
indices. Although not exact in general, the quantization c
dition ~1! does~implicitly ! produce individual energy level
En1 , . . . ,nN

that can be labeled, one by one, with theN quan-

tum numbersn1 , . . . ,nN . This procedure differs markedl
from the chaotic case where the focus is not on individ
energy levels but onglobal characteristics of the spectrum
For instance, instead of finding individual energy levels as
Eq. ~1!, periodic-orbit quantization schemes for chaotic s
tems, such as, Gutzwiller’s trace formula@1# compute the
density of states

r~k!5(
j 51

`

d~k2kj !, ~2!

from which individual energy levels are extracted indirec
as the singularities ofr. In a chaotic system the only avai
able classical input are the periodic orbits of the system
the density of states~2! is computed according to@1#

r~k!'r̄~k!1
1

p
Im(

p
Tp~E! (

n51

`

Ap
n~E!einSp(E). ~3!

Here r̄(k) is the average density of states,Sp(E), Tp(E),
and Ap(E) are correspondingly the action, the period, a
the weight factor of the prime periodic orbit labeled byp,
and n is the repetition index. Again, the scheme~3! is not
usually exact. More seriously, however, in contrast to Eq.~1!
it fails to produce individual energy levels in the form ‘‘En
5 . . . .’’ The difference between Eq.~1! and Eq.~3! cannot
be emphasized enough. While Eq.~1! allows us to ‘‘pick and
1063-651X/2002/65~4!/046222~10!/$20.00 65 0462
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choose’’ a particular energy eigenvalue, in the chaotic c
all of the eigenvalues have to be computed according to
~3!, and only a subsequent nonanalytic inspection and co
ing procedure allows us to focus on an individual ener
level. There is, however, a class of quantum chaotic syste
regular quantum graphs@2#, which are explicitly solvable
analytically @2#, i.e., exact periodic-orbit expansions of th
form ‘‘ En5 . . . ’’ exist. The purpose of this paper is to e
pand considerably with respect to the work presented in@2#
and to present a thorough discussion of our methods
their validity.

The organization of this paper is as follows. In Sec. II w
extend the theory of quantum graphs@3–7# to include
dressed graphs, i.e., quantum graphs with arbitrary poten
on their bonds. In Sec. III we define regular quantum gra
and present explicit, convergent periodic-orbit expansions
individual eigenvalues. These expansions are not just for
identities; the periodic-orbit expansions presented in Sec
converge, and converge to the correct eigenvalues. In Sec
we present a worked example of a simple quantum gr
whose spectrum is computed in three different ways:~i! nu-
merically exactly,~ii ! via the explicit periodic-orbit expan
sions presented in Sec. III, and~iii ! via numerical integration
using an exact trace formula for the density of states. T
results of the three methods agree. This proves the vali
and convergence of our approach. In Sec. V we summa
our results and conclude the paper.

II. DRESSED QUANTUM GRAPHS

A quantum graph consists of a quantum particle who
motion is confined to a one-dimensional network ofNB
bondsBi j connectingNV verticesVi . An example of a graph
with six vertices and ten bonds is shown in Fig. 1. The
pology of a given graph is fully characterized by its conne
tivity matrix Ci j

Ci j 5Cji 5H 1 if Vi and Vj are connected

0 if they are not.
~4!

Every bondBi j , which connects the verticesVi and Vj ,
supports a solutionc i j (x) of the Schro¨dinger equation

S 2 i
d

dx
2Ai j D 2

c i j ~x!5Ec i j ~x!. ~5!
©2002 The American Physical Society22-1
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Here 0<x<Li j is the coordinate alongBi j measured fromVi
to Vj , and Li j 5L ji is the length of the bond. A constan
real, skew symmetric matrixAi j 52Aji , which plays the
role of a magnetic field vector potential, is sometimes int
duced as a tool for braking the time-reversal symme
which, in turn, is known to affect the statistics of the lev
distribution @8,9#.

In this paper we generalize the Schro¨dinger operator in
Eq. ~5! by adding potentialsUi j (x,E) on the graph bonds
We call this generalization ‘‘dressing of the graph.’’ While,
general, the potentialsUi j (x,E) may depend on the bon
coordinatex and the energyE in an arbitrary way, we restric
ourselves here to thescalingcase

Ui j ~E!5l i j E, l i j 5l j i , ~6!

which allows us to introduce physical parallels betwe
quantum graphs and ray-splitting systems@10–12#. A quan-
tum graph with the potentials~6! on its bonds can also b
viewed as a generalized step potential, such as, the
shown in Fig. 2~a!. These potentials were studied earlier
great detail in connection with Anderson localization@13#.
Potentials of this type can be represented by a linear gr
such as, the one shown in Fig. 2~b!. Scaled potentials, suc
as Eq.~6! cast the Schro¨dinger equation into the form

S 2 i
d

dx
2Ai j D 2

c i j ~x!5b i j
2 Ec i j ~x!, ~7!

where the parametersb i j
2 512l i j , b i j 5b j i are defined on

the corresponding bondsBi j .
Depending on whether the energyE5k2 of the particle is

above or below the scaled potential heightUi j (E), the solu-
tion of Eq.~7! on the bondBi j is either a combination of the
free waves

c i j ~x!5ai j

exp@ i ~2b i j k1Ai j !x#

Ab i j k
1bi j

exp@ i ~b i j k1Ai j !x#

Ab i j k
,

FIG. 1. A generic nonplanar graph with six vertices and
bonds.
04622
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l i j ,1, ~8!

or a combination of the tunneling solutions

c i j ~x!5ai j exp@~2b i j k1 iAi j !x#1bi j exp@~b i j k

1 iAi j !x#, l i j .1, ~9!

where the factors (b i j k)21/2 in the propagating waves~8!
were introduced to ensure proper flux normalization@14#.
Due to the scaling assumption, there is no transition betw
these two cases as a function ofE. From now on we shall
assume that the energyE is kept above the maximal scale
potential height

l i j ,1, i , j 51, . . . ,NV , Ci j Þ0, ~10!

which will allow us to exclude the tunneling solutions~9!. At
every vertexVi , the bond wave functions satisfy the con
nuity conditions

c i j ~x!ux505w iCi j , i , j 51, . . . ,NV ~11!

and the current conservation conditions

(
j 51

NV

Ci j S 2 i
d

dx
2Ai j Dc i j ~x!ux5052 il iw i ,

i , j 51, . . . ,NV . ~12!

Herew i is the value of the wave function at the vertexVi ,
and thel i ’s are free parameters of the problem for which t
scaling is introduced as

FIG. 2. An example of a~Manhattan! step potential~a! and its
associated linear graph~b!. Also shown is a non-Newtonian peri
odic orbit characterized by six above-barrier reflections.
2-2
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l i5l i
0k. ~13!

The conditions~11! and ~12! are consistent only for a dis
crete set of wave numberskn , which defines the spectrum o
the quantum graph problem. Sincec i j (x) andc j i (y) repre-
sent the same wave function on the bond connecting
verticesVi andVj ~the only difference is thatx is measured
from vertexVi andy is measured from vertexVj ), we have

c j i ~Li j 2x!5c i j ~x!. ~14!

Using Eq.~8! we obtain

c j i ~Li j 2x!5aji

exp@ i ~2b i j k1Aji !~Li j 2x!#

Ab i j k

1bji

exp@ i ~b i j k1Aji !~Li j 2x!#

Ab i j k
5c i j ~x!.

~15!

Therefore, the coefficientsai j and bi j are related according
to

aji 5bi j exp@ i ~b i j k1Ai j !Li j #

bji 5ai j exp@ i ~2b i j k1Ai j !Li j #. ~16!

The coefficientsai j and aji , (bi j and bji ! are considered
different. This implies that the bonds of the graph are
rected. Equations~16! can be written in matrix form as

aW 5PD̃~k!bW , ~17!

whereaW and bW are the 2NB-dimensional vectors of coeffi
cients, D̃ is a diagonal matrix in the 2NB32NB space of
directed bonds, and

P5S 0 1NB

1NB
0

D , ~18!

where 1NB
is theNB-dimensional unit matrix. Explicitly we

have

D̃ i j ,pq~k!5d ipd jqexp@ i ~b i j k1Ai j !Li j #. ~19!

The pairs of indices (i j ), (pq), identifying the bonds of the
graph G, play the role of the indices of the matrixD̃(k).
Alternatively the wave function can be written as a line
combination of plane waves scattering offVi . An incoming
wave with normalized flux on the bondBj 8 i gives rise to a
partial wave contribution scattering into bondBi j according
to

c j j 8
( i )

~xj !5d j j 8

exp@ i ~2b i j k1Ai j !xj #

Ab i j k

1s j , j 8
( i ) exp@ i ~b i j k1Ai j !xj #

Ab i j k
. ~20!
04622
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Here s j , j 8
( i ) (k) is the matrix element of the vertex scatterin

matrix s ( i )(k), which distributes the incoming flux on bon
Bj 8 i into the bondBi j . The wave functionc i j (xj ) on the
bond Bi j is a superposition of the partial waves~20! with
amplitudesai j 8 corresponding to the incoming flux on th
bondBj 8 i towards the vertexVi , i.e.,

c i j ~xj !5(
j 8

ai j 8c j j 8
( i )

~xj !. ~21!

Using the representation~8! of c i j in Eq. ~21! and comparing
coefficients yields

bi j 5(
j 8

s j , j 8
( i ) ai j 8 . ~22!

Substituting Eq.~20! into the boundary conditions, we obtai
the vertex scattering matrix

s j , j 8
( i ) [s j i ,i j 8

( i )
5S 2d j j 81

2Ab i j b i j 8

v i1 il i
0 D Cji Ci j 8 ~23!

with

v i5(
j 51

NV

b i j Ci j . ~24!

We see that, in the scaling case, the matrix elementss j , j 8
( i ) of

the vertex scattering matrixs ( i ) arek-independent constants
The matrix elements j , j

( i ) has the meaning of the reflectio
coefficient from the vertexVi along the bondBi j , and the
elementss j , j 8

( i ) , j Þ j 8 are the transmission coefficients fo
transitions between different bonds. Equation~22! can be
written as

bW 5T̃aW , ~25!

where

T̃[T̃i j ,nm5d inCji Cnms j ,m
( i ) . ~26!

Equations~17! and ~25! together result in

aW 5S~k!aW , ~27!

whereS(k) ~the total graph scattering matrix! is given by

S~k!5D~k!T ~28!

andD5PD̃P andT5PT̃. The consistency of the system o
linear Eqs.~27! requires the spectral equation

D~k!5det@12S~k!#50 ~29!

to be satisfied. This condition defines the set of allowed m
menta$kn%.

The density of the momentum states of the dressed qu
tum graph is given by
2-3
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r~k!5 (
n51

`

d~k2kn!, ~30!

where the kn’s are the solutions of Eq.~29!. An exact
periodic-orbit expansion forr(k) can be obtained directly
from the spectral Eq.~29! as follows@3–7#. The logarithmic
derivative of Eq.~29! is singular at each one of its root
Between roots, the phase of the spectral determinant va
slowly such that

r~k!5 r̄~k!2
1

p
lim
e→0

Im
d

dk
ln det@12S~k1 i e!#. ~31!

Using the well-known identity@3–7#

ln det@12S#52Tr(
n51

`
1

n
Sn, ~32!

we obtain

r~k!5 r̄~k!1
1

p
lim
e→0

Im
d

dk (
n51

`
1

n
Tr@S~k1 i e!#n. ~33!

Since the matrix indices of Eq.~28! correspond to the verti
ces of the graph, the trace of thenth power of the scattering
matrix can be interpreted as a sum over all closed, conne
sequences consisting ofn bonds@3–7#. Classically, these pe
riodic connected sequences ofn bondsBi j correspond to the
periodic orbits traced by a point particle moving on t
graph. Geometry and proliferation properties of the perio
orbits are determined completely by the topology of t
graph.

The behavior of the periodic orbits on graphs exhibits
typical features of chaotic systems. The meaning of class
chaoticity on graphs is well defined, as demonstrated in
following. A classical graph system consists of a graphG and
a point particle moving along its bonds, which scatters e
tically at every vertexVi along the direction of any of the
bonds emanating from this particular vertex, with differe
probabilities. The probability amplitudes for every scatteri
channel can be obtained in the short wavelength limit fr
the quantum-mechanical transition amplitudes defined at
ery vertexVi by the corresponding scattering matrixs j , j 8

( i ) . In
the scaling case, the matrix elementss j , j 8

( i ) arek-independent
constants and thus do not depend on\ at all. Therefore, the
same matrix elements determine both the quantum and
classical scattering probabilities.

For every given graphG the global average rate of expo
nential proliferation of periodic orbits, the topological e
tropy L, is given by

L5 lim
l→`

ln@N~ l !#

l
, ~34!

where l characterizes the length of the periodic orbits~for
instance their code lengths! andN( l ) is the total number of
periodic orbits of length< l . The number of possible peri
04622
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odic orbits increases exponentially with their lengths~or,
equivalently, the number of scattering events! with a rateL
that depends only on the topology of the graph. Since
phase space of the system is bounded, the dynamics of
a particle is mixing@3#.

Since we are focusing on the casel i j ,1, most of the
classical periodic orbits on a graph are above-barrier refl
tion orbits as illustrated in Figs. 2 and 3. In the context of r
splitting these orbits are also known as non-Newtonian or
@15–17#. The inclusion of all non-Newtonian orbits in ou
periodic-orbit expansions of individual eigenvalues d
cussed below is crucial for rendering these expansions ex

Traversing the bondBi j contributes the amount

Si j 5E
Bi j

~b i j k1Ai j !dx ~35!

to the total action of the trajectory traced by the partic
These actions appear in the phases of the exact wave f
tions ~8!. This connection means that the semiclassical~ei-
konal! form is exact for the quantum graph wave function
More importantly, the amplitudeseiSi j determine the matrix
D(k), and hence the scattering matrixS(k). As a conse-
quence, the ‘‘closed bond sequence expansion’’~33! can be
written explicitly as a periodic-orbit expansion in terms
the phases~35!

r~k!5 r̄~k!1
1

p
Re(

p
Tp~k! (

n51

`

Ãp
neinS̃p(k), ~36!

where S̃p is the action of the prime periodic orbitp com-
posed of the partial actionsSi j of Eq. ~35! accumulated along
the periodic orbitp, andTp(k)5dS̃p(k)/dk. The first term in
Eq. ~36! describes the average behavior of the density
states while the second represents the fluctuations aroun

FIG. 3. A scaling step potential~top!, equivalent to a three-
vertex linear graph~bottom!, as an example of a regular quantu
graph. A Newtonian (LR) and two non-Newtonian (L,R) periodic
orbits are also shown together with theirL2R codes.
2-4
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average. The amplitude of every periodic orbitp contains the
constant factor exp(i(ijAijLij). This factor can be absorbe
into the weight factorÃp . Thus, defining the reduced class
cal bond actions

Si j
0 5b i j L i j ~37!

and the total reduced actionSp
0 accumulated along the per

odic orbit p

Sp
05 (

i j along p
Si j

0 , ~38!

the final periodic-orbit expansion for the density of states
scaling systems can be written as

r~k!5 r̄~k!1
1

p
Re(

p
Sp

0(
n51

`

Ap
neinSp

0k. ~39!

In contrast with Eq.~3!, the expression~39! for the density of
states is exact; the action lengthsSp

0 and the weight factors
Ap arek-independent constants.

The staircase function

N~k!5 (
n51

`

Q~k2kn! ~40!

is obtained by direct integration of Eq.~30!. Using Eq.~39!,
N(k) can be expanded as

N~k!5N̄~k!2
1

p
lim
e→0

Im ln det@12S~k1 i e!#

5N̄~k!1
1

p
Im(

p
(
n51

` Ap
n

n
einSp

0k. ~41!

Just like Eq.~39! this expansion is exact. The first term re
resents the average behavior of the staircase; the second
describes the fluctuations around the average.

III. REGULAR QUANTUM GRAPHS AND EXPLICIT
SPECTRAL FORMULA

Since the scattering matrix~28! is a unitary matrix, its
eigenvalues have the formsl5eiu l (k). Therefore, the spectra
determinant~29! can be written as

D~k!5)
l 51

2NB

@12eiu l (k)#5F12(
l 51

2NB

eiu l (k)1•••1ei(
l 51

2NB

u l (k)G
52eiQ0(k)Fcos@Q0~k!#1 (

j 51

NC21

~21! jcos@Q j~k!#G ,

~42!

where

Q05
1

2 (
l 51

2NB

u l~k! ~43!
04622
r
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is the total phase of the spectral determinant, theQ j ’s in Eq.
~42! are linear combinations~sums and differences! of the
phasesu l(k) andNC54NB/2. Evaluated directly, the spectra
determinant is a polynomial of the~complex! matrix ele-
ments~19! with coefficients that are determined by the m
trix elements~26!. Factoring out the total phase~43! of this
polynomial, we obtain the spectral equation in the form

cos~S0
0k2pg0!5F~k!, ~44!

where

F~k!5(
i 51

NG

ai cos~V ik2pg i !. ~45!

Here, based on the reduced bond actions defined in Eq.~37!,
S0

05( i j Ci j Si j
0 is the total reduced action length of the grap

the frequenciesV i,S0
0 are sums and differences of the r

duced bond actionsSi j
0 andg0 , g i are constants. For a gen

eral graphG it is difficult to calculate the precise number o
cos termsNG in Eq. ~45!. But an upper limit is given by the
number of possible linear combinations of theNB reduced
bond actionsSi j

0 . Since there are

2 j S NB

j D
ways of pickingj actions out ofNB possible ones and com
bining them with ‘‘1 ’’ and ‘‘ 2 ’’ signs, we obtain

NG<(
j 51

NB

2 j S NB

j D 5211(
j 50

NB S NB

j D 2 j1NB2 j53NB21.

~46!

A graphG is calledregular, if the condition

(
i 51

NG

uai u5a,1 ~47!

is fulfilled. In case the condition~47! is satisfied, the spectra
Eq. ~44! can be immediately solved to yield the followin
implicit equation for the eigenvalues:

kn5
p

S0
0 @n1m1g0#

1
1

S0
0H arccos@F~kn!# for n1m even

p2arccos@F~kn!# for n1m odd,

~48!

wherem is a fixed integer, chosen such thatk1 is the first
positive solution of Eq.~44!. Equation~48! implies the exis-
tence ofseparating points

k̂n5
p

S0
0 ~n1m1g011! ~49!
2-5
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in the spectrumkn of Eq. ~44!. Because of Eq.~47! the points
k̂n are never solutions of Eq.~48!. They act as separator
betweenkn and kn11. Since the second term in Eq.~48! is
bounded byp/S0

0, the deviationukn2 k̂nu never exceedsp/S0
0

for any n. We emphasize, that the separatorsk̂n do not coin-
cide with the average valuesk̄n of the rootskn . The explicit
decomposition of the rootskn into an average partk̄n and a
fluctuating partk̃n , kn5 k̄n1 k̃n , can be obtained from the
following equivalent formulation of Eq.~48!:

kn5
p

S0
0 Fn1m1g01

1

2G1
~21!n1m

S0
0 H arccos@F~kn!#2

p

2 J .

~50!

This form ofkn together with the boundedness of the seco
term in Eq. ~50! proves rigorously thatN̄(k), r̄(k) are of
the form

N̄~k!5
S0

0

p
k1N̄~0!, r̄~k!5

dN̄~k!

dk
5

S0
0

p
. ~51!

SinceF(k) contains only frequencies smaller thanS0
0, every

open intervalI n5( k̂n21 ,k̂n) contains one and only one roo
i.e. kn . Moreover, if Eq.~47! is fulfilled, the allowed zones
Zn,I n , where the rootskn can be found, narrows down to

knPZn[S p

S0
0 ~n1m1g01u!,

p

S0
0 ~n1m1g0112u!D ,

~52!

whereu5arccos(a)/S0
0. Correspondingly, there exist forbid

den regionsRn

Rn[S p

S0
0 ~n1m1g0112u!,

p

S0
0 ~n1m1g0111u!D ,

~53!

where roots of Eq.~48! can never be found. Note thatk̂n
PRn . In the limit a→1 (u→0), the width of the forbidden
regionRn shrinks to zero, and the allowed zoneZn occupies
the whole root intervalI n .

The existence of the separating points~49! is the key to
obtaining the explicit form of the periodic-orbit expansio
for individual rootskn . Multiplying both sides of Eq.~39! by
k and integrating fromk̂n21 to k̂n , we obtain

kn5 k̂n2
p

2S0
0 2

1

p
Re(

p
(
n51

`

Ap
n

einSp
0k̂n

n H ~12e2 invp!

3S i k̂n2
1

nSp
0D 1

ip

S0
0 e2 invpJ , ~54!

where we used Eq.~51! for the integral overkr̄ and defined
vp5pSp

0/S0
0 . Since all the quantities on the right-hand si

of Eq. ~54! are known, this formula provides an explicit re
04622
d

resentation of the rootskn of the spectral Eq.~29! in terms of
the geometric characteristics and the classical propertie
the graph.

In Ref. @18# a mathematical proof is presented, which a
sures us that Eq.~54! converges. In addition it is proved in
Ref. @18# that Eq.~54! converges to the exact spectral eige
values. Both convergence, and convergence to the co
results are illustrated with the help of a specific example
Sec. IV. It is also proved in Ref.@18# that the series~54! may
only be conditionally convergent. This means that for prop
convergence the ordering of the terms in Eq.~54! is impor-
tant. Proper convergence of Eq.~54! is obtained if the terms
in Eq. ~54! are ordered according to the code lengths of
periodic orbits@18#. In other words, the sum in Eq.~54! is to
be extended over all periodic orbits with code lengt
smaller than or equal tol, which yields the approximation
kn( l ) to kn . Then, on the basis of the results obtained in R
@18#, we have liml→`kn( l )5kn . This means that Eq.~54! is
exact. It is important to note here that the ordering of ter
in Eq. ~54! is not according to their action lengths, but a
cording to the lengths of the code words that code for
periodic orbits. This is intuitively understandable, since t
code lengthl is connected to the powern of the S matrix in
Eq. ~33! according tol 5n/2.

The expansion~54! provides an explicit representation o
the roots of the spectral equation~29! in terms of the geo-
metric characteristics of the graph. In a similar way one c
obtain explicit expansions for any power of the energy lev
kn

m or any function of the eigenvaluesf (kn).

IV. EXAMPLES

The coefficientsAp in Eq. ~54! assume a particularly
simple form in the case of linear graphs withl i

050, i
51, . . . ,NV . Both the vertices and the bonds of a line
graph can be naturally labeled by means of a single in
such that B1,2[B1 , B2,3[B2 , . . . ,BNV21,NV

[BNV21

~see Fig. 2!. The scaling coefficients for the momentum
the particle are correspondingly b1,2[b1 , b2,3
[b2 , . . . ,bNV21,NV

[bNV21, the bond lengths areL1,2

[L1 , L2,3[L2 , . . . ,LNV21,NV
[LNV21, the potentials are

U1,2[U1 , U2,3[U2 , . . . ,UNV21,NV
[UNV21 and the re-

duced bond actions are S1,2
0 [S1

05b1L1 , S2,3
0 [S2

0

5b2L2 , . . . ,SNV21,NV

0 [SNV21
0 5bNV21LNV21, respectively.

In this case, if a prime periodic orbitp undergoessp
i reflec-

tions from a vertexVi and 2tp
i transmissions through it, the

weight coefficient in the expansion~39! is @17#

Ap5)
i

r
i

sp
i

~12r i
2!tp

i
, ~55!

wherer i is the reflection coefficient from the vertexVi , and
the product is taken over all the vertices encountered by
orbit p. If a particle reflects from the vertexVi traveling
along the bondBi , the reflection coefficient is
2-6
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TABLE I. Successive approximations of the eigenvaluesk1 ~first row!, k10 ~second row!, andk100 ~third
row! of a specific scaling step potential~see text for details! as a function of the code lengthl ~columns 2–5!.
The exact values ofk1 , k10, and k100 are listed in column 6. Column 7 lists the absolute erro
ukn( l 520)2knu for n51, 10, and 100.

Root l 55 l 510 l 515 l 520 Exact Error

k1 4.11608 4.11653 4.10721 4.10513 4.10715 0.0020
k10 39.28658 39.29807 39.30730 39.30521 39.30521 0.0000
k100 394.94770 394.95647 394.96622 394.96456 394.96471 0.000
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r i5
b i 212b i

b i 211b i
, i 52, . . . ,NV21, r 1521, r NV

521.

~56!

We assumed Dirichlet boundary conditions at the left a
right dead ends of the graph. The reflection coeffici
changes its sign if the reflection happens from the side of
bond Bi 11. If, for a given orbit, the total number of reflec
tions with r i,0 is xp , then

Ap5~21!xp)
i

ur i usp
i
~12r i

2!tp
i
. ~57!

The two-vertex linear graph is trivial and corresponds to
quantum particle in a square-well box. A quantum parti
moving in a scaling step potential as shown in Fig. 3, giv
rise to the simplest nontrivial graph, the scaling three-ver
linear graph, shown on the bottom of Fig. 3. In this ca
there is only one nontrivial reflection coefficient

r 25
b12b2

b11b2
. ~58!

All the periodic orbits of the three-vertex linear graph sho
in Fig. 3 correspond one to one with words formed from
binary code with two lettersL and R @17–19#, where L
stands for a reflection of the orbit off the leftmost vert
~left-hand potential wall!, andR stands for a reflection of
the rightmost vertex~right-hand wall!. Thus theL, R code
is unique and complete. For this system the spectral equa
is

sin~S0
0k!2r 2 sin~V1k!50, ~59!

whereS0
05S1

01S2
0 is the total reduced action of the grap

andV15S1
02S2

0. With a15r 2 andg05g15p/2, Eq.~59! is
of the form ~44!, ~45! and the number of cos terms inf(k)
~in this case one term! complies with the estimate~46!. Be-
cause ofur 2u,1, it is the spectral equation of a regular qua
tum graph. Using the explicit form~57! of the coefficientsAp
in the expansion~54!, we obtain the explicit series expansio
for every rootkn of Eq. ~59!. Thus the spectrum of the sca
ing step potential shown in Fig. 3 may be calculated exp
itly and analytically with the help of Eq.~54!. This by itself
is a considerable advance in the theory of simple o
dimensional quantum systems, which up to now could o
be solved using graphical or numerical techniqu
@14,20,21#.
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We illustrate the method and the convergence of the se
expansion~54! with the following concrete, dimensioned ex
ample of the scaling step potential of Fig. 3. Choosingb
50.3, l150, and l251/2, we computed the solution
k1 , k10, andk100 of Eq. ~59! using three different methods
~i! exact numerical,~ii ! explicit periodic-orbit expansion~54!
of the individual eigenvalues and~iii ! numerical integration
using the S-matrix representation~33! of the density of
states. Addressing~i! we obtained the exact numerical valu
of the three selected roots of Eq.~59!. The result isk1
54.107 149,k10539.305 209, andk1005394.964 713.

Turning to method~ii ! we recomputed these three eige
values using Eq.~54! directly including progressively more
periodic orbits in the expansion~54!. The result is presented
in Table I that shows the values ofk1 , k10 andk100 computed
with Eq. ~54! including periodic orbits coded by binar
words of lengthl 55, 10, 15, and 20, respectively. This co
responds to including 23, 261, 4807, and 111 321 perio
orbits in the expansion~54!, respectively. We observe tha
the accuracy does not improve monotonically, but that th
is a definite overall improvement of accuracy with the co
length. As a matter of fact, as discussed above and sh
mathematically in@18#, the series~54! converges, and con
verges to the exact results ofkn in the limit of l→`.

Turning to method~iii ! we note that due to the exponen
tial proliferation of periodic orbits, it becomes progressive
more difficult to compute the codes of longer periodic orbi
Nevertheless, with the help of a numerical procedure, we
able to illustrate the convergence behavior of Eq.~54! for
code lengths much longer thanl 520. Starting from Eq.~33!
we compute theS matrix numerically and perform all the
steps leading up to Eq.~54! numerically. In particular, this
method involves numerical computation ofS-matrix powers
and numerical integration overk. Within any given level of
numerical accuracy this method is completely equivalen
the method of summing the orbits, but allows us to exte
the computations such that we effectively include all perio
orbits up to code lengthl 5150. This corresponds roughly t
215051.431045 periodic orbits, since the periodic orbits o
the three-vertex linear graph are coded by a binary co
This estimate is substantiated by an analytical estimate of
number of periodic orbits. For the three-vertex graph
periodic orbits are binary necklaces over the two symbolL
andR @18#. The number of binary necklaces of lengthl is
given by @22#

N~ l !5
1

l (
nul

f~n!2l /n, ~60!
2-7
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where the symbol ‘‘nul ’’ denotes ‘‘n is a divisor ofl ,’’ and
f(n) is Euler’s totient function defined as the number
positive integers smaller thann and relatively prime ton
with f(1)51 as a useful convention. An upper limit forL is
obtained if we use Eq.~60! in the case wherel is a prime
number. In this case~60! reduces to

N~p!5
1

p
@f~1!2p1f~p!21#5

1

p
@2p12~p21!#, ~61!

where p is prime. Thus, in the limit ofp→` we have
N(p)→2p/p, and therefore,

L5 lim
p→`

ln@N~p!#

p
5 ln~2!. ~62!

Thus, according to this estimate, the total number of perio
orbits of length 150 is again

N~150!;e150L52150. ~63!

We also computed numerical estimates ofL. Using the exact
formula ~60! for counting periodic orbits in Eq.~34! and
including periodic orbits with code lengths of up tol
51000, we foundL.1.987, consistent with the estima
~62!. For l 5150, relevant for our numerical example, th
asymptotic regime is not yet reached and we findL
' ln(1.943). This value forL can be used for a more refine
estimate of the number of periodic orbits of lengthl
5150, N(150)'1.943150'231043. Clearly, computing the
codes of that many periodic orbits and summing them up
Eq. ~54! is beyond the storage capacity and power of a
currently existing computer, but is apparently no obstacle
the numerical simulation of that many periodic orbits i
cluded in Eq.~54!. Figure 4 illustrates the rate of conve
gence of the eigenvaluesk1 , k10, and k100 obtained with
method~iii ! as a function of code lengthl %150. Shown is
the relative errore l5ukn( l )2knu/kn for n51, 10, and 100.

FIG. 4. The deviatione l5ukn( l )2knu/kn of the exact eigenval-
ues fork1 , k10, andk100 from the corresponding values obtaine
via the series representation, as a function of the lengthsl of the
periodic orbits.
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The error is seen to decrease on average as a function o
increasing periodic-orbit lengthl. From Fig. 4 we obtain ap-
proximatelye l5ukn( l )2knu/kn;1/l 2 on average.

For a four-vertex linear graph, the spectral equation is

sin~S0
0k!5r 3 sin~V1k!2r 2r 3 sin~V2k!1r 2 sin~V3k!,

~64!

where S0
05S1

01S2
01S3

0 , V15S1
01S2

02S3
0 , V25S1

02S2
0

1S3
0 , V35S1

02S2
02S3

0 and r 2 , r 3 are the reflection coeffi-
cients at the verticesV2 and V3, respectively. Withg i
5p/2, i 50,1,2,3, this spectral equation is of the form~44!,
~45! and the number of cos terms inf(k) ~three in this case!
complies with Eq.~46!. For

ur 3u1ur 2r 3u1ur 2u,1 ~65!

the four-vertex linear graph is regular. In this case the ene
values of the four-vertex linear graph may be calculated
actly using the periodic-orbit expansion~54!. According to
Fig. 5 the set ofr 2 , r 3 values that fulfill Eq.~65! occupies a
diamond-shaped area bounded by the functionsr 356(1
2ur 2u)/(11ur 2u). This observation proves that regular qua
tum graphs are an important, finite-measure subset of qu
tum graphs.

The set of regular quantum graphs is much wider than
three- and four-vertex quantum graphs discussed in de
above. Since, as indicated by Eqs.~59! and ~64!, the ampli-
tudes ai in Eq. ~45! involve products of vertex reflection
coefficients, and since the vertex reflection coefficients o
linear quantum graph~via proper choice of the bond poten
tials! are free parameters of the quantum graph, a fin
measure set of regular quantum graphs exists forany given
linear graph. It is possible that more complex graph topo
gies, such as, rings and stars, may also admit a set of reg
quantum graphs. This topic is currently under investigatio

FIG. 5. Parameter space (r 2 ,r 3) of a four-vertex linear quantum
graph. Parameter combinations in the shaded region correspo
regular quantum graphs. This demonstrates that the subset of
lar quantum graphs within the set of all four-vertex linear quant
graphs is nonempty and in fact of finite measure.
2-8
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V. DISCUSSION, SUMMARY, AND CONCLUSION

In this paper we defined and studied a subset of quan
graphs: regular quantum graphs. Regular quantum gra
satisfy the regularity condition~47!, which implies that the
roots of the spectral equation are confined to regula
spaced root intervals. One and only one root is found
root interval. This property allows us to derive rigorous, co
verging periodic-orbit expansions for individual energy le
els of regular quantum graphs.

We often hear the comment that the expansion~54! for kn
cannot possibly converge, since Eq.~39! is divergent. This
comment is invalid. There is a fundamental difference
tween Eq.~39! and Eq.~54!. Equation~39! is a periodic-orbit
expansion of the kernel of a functional~a series of Diracd
‘‘functions’’ !, whereas Eq.~54! is a periodic-orbit expansion
of a simplec number. On the level of Eq.~39! the concepts
of convergence or divergence are not even defined. O
after multiplying Eq.~39! with a test function@23# and inte-
grating overk, are the concepts of divergence and conv
gence defined. In this sense even Eq.~39! is convergent. This
is also known as convergence in the distribution sense@23#
and leads to proper convergence in the usual sense o
ementary undergraduate-level analysis. Thus, the con
gence of Eq.~54! is no longer a mystery.

Another more serious comment concerns the sens
which quantum graphs are classically chaotic. Quant
graphs are based on a one-dimensional network of vert
and bonds. Therefore, a dynamical Liapunov exponent@1,24#
cannot be defined in the traditional sense of exponenti
diverging initially close trajectories. As explained in@3#,
however, this is no obstacle to associate a classical p
space with a quantum graph and to show that the class
dynamics in this phase space is mixing@3#. Moreover, quan-
tum graphs fulfill another property of quantum chaos,
exponential proliferation of classical periodic orbits as ma
fested by a positive topological entropy~see Secs. III and
IV !. Therefore, quantum graphs have been called ‘‘pa
digms of quantum chaos’’@7#. Inasmuch as the positive to
pological entropy is concerned, regular quantum gra
qualify as quantum chaotic systems. Regular quantum gra
do not show all the characteristics of ‘‘fully developed
quantum chaos. For instance, due to of the existence of
forbidden zonesRn ~see Sec. III! they definitely do not show
a Wignerian nearest neighbor statistics. We do not beli
that this is a problem, since there is no universally accep
rigorous definition of quantum chaos that requires ‘‘Wig
erian statistics’’ as one of the necessary conditions. The o
broadly accepted criterion is that ‘‘quantum chaos’’ de
with quantum systems that are chaotic in their classical lim
Based on this criterion, together with the mixing property@3#
and the positive topological entropy~see Sec. IV!, regular
cs
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quantum graphs definitely qualify as quantum chaotic s
tems, i.e., systems chaotic in the classical limit.

A more delicate point concerns the derivation of Eq.~54!
by integrating the fluctuating part in Eq.~39! term by term.
Since the resulting periodic-orbit expansion may only
conditionally convergent, this is reason for concern. We
dressed this point from a rigorous mathematical point
view in @18#. We were able to prove rigorously that the in
terchange of integration and summation in thek integral of
kr(k) is allowed. Thus, term-by-term integration of Eq.~39!
is justified, validating the final result~54!.

To our knowledge this is the first time that the ener
levels of a class of classically chaotic systems are expre
one by one with the help of convergent periodic-orbit expa
sions. Studying specific examples of regular quantum gra
we proved that the class of regular quantum graphs is
empty; it is in fact an important finite-measure subset
quantum graphs. The explicit formulas of individual qua
tum energy levels obtained in this paper remind us of
Einstein-Brillouin-Keller~EBK! method@1# for the quantiza-
tion of integrable classical systems. But there are import
differences. Regular quantum graphs do not correspon
classically integrable systems. In fact, due to the importa
of non-Newtonian periodic orbits, the number of classic
periodic orbits proliferates exponentially with the cod
length. This proves that even regular quantum graphs
defined by the regularity condition~47!, are classically cha-
otic systems with a positive topological entropy. For one
our examples, the scaling step potential discussed in Sec
we computed estimates of the topological entropy anal
cally and numerically. In both cases it turned out to be po
tive and close to ln(2). This proves that, at least for the ca
studied, the classical limit is chaotic. Another difference
EBK theory is that the periodic orbits in regular quantu
graphs are not confined to phase-space tori. Finally, in c
trast with EBK theory—a semiclassical theory that does
usually return exact results—our formulas are mathem
cally exact. In summary, despite the apparent complexity
exponential proliferation of the periodic orbits of regul
quantum graphs, the organization of the roots of the spec
equation into regularly spaced intervals makes it possible
pinpoint every single energy eigenvalue of a regular quan
graph analytically and exactly by an explicit, converge
periodic-orbit expansion.
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