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Exact, convergent periodic-orbit expansions of individual energy eigenvalues
of regular quantum graphs
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We present exact, explicit, convergent periodic-orbit expansions for individual energy levels of regular
quantum graphs in the paper. One simple application is the energy levels of a particle in a piecewise constant
potential. Since the classical ray trajectoriggluding ray splitting in such systems are strongly chaotic, this
result provides an explicit quantization of a classically chaotic system.
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[. INTRODUCTION choose” a particular energy eigenvalue, in the chaotic case
all of the eigenvalues have to be computed according to Eq.
Wwithin the framework of semiclassical periodic-orbit (3), and only a subsequent nonanalytic inspection and count-
theory the quantization procedures for integrable and chaotimg procedure allows us to focus on an individual energy
systems differ substantially. An integrable system may bdevel. There is, however, a class of quantum chaotic systems,
quantized using the Einstein-Brillouin-Keller thedry]. The  regular quantum graphi2], which are explicitly solvable

set of integrals analytically [2], i.e., exact periodic-orbit expansions of the
form “E,,= ... " exist. The purpose of this paper is to ex-
_ (. . pand considerably with respect to the work presente@jn
l Lipﬂdq h(mitp), 1=1,... N, D and to present a thorough discussion of our methods and
their validity.
extended along theN fundamental cyclesC; of the The organization of this paper is as follows. In Sec. Il we

N-dimensional phase-space tori yield tlisemiclassical extend the theory of quantum graph8-7] to include
guantization conditions for every action variabje Here the  dressed graphs, i.e., quantum graphs with arbitrary potentials
n;’s are integer quantum numbers and fags are Maslov  on their bonds. In Sec. Ill we define regular quantum graphs
indices. Although not exact in general, the quantization conand present explicit, convergent periodic-orbit expansions of
dition (1) does(implicitly) produce individual energy levels individual eigenvalues. These expansions are not just formal
that can be labeled, one by one, with theguan-  identities; the periodic-orbit expansions presented in Sec. Il
tum numbersn,, ... ,ny. This procedure differs markedly Converge, and converge to the correct eigenvalues. In Sec. IV
from the chaotic case where the focus is not on individualVe Present a worked example of a simple quantum graph
energy levels but omlobal characteristics of the spectrum. Whose spectrum is computed in three different waysnu-

For instance, instead of finding individual energy levels as ifnerically exactly,(ii) via the explicit periodic-orbit expan-
Eq. (1), periodic-orbit quantization schemes for chaotic sys-Sions presented in Sec. IIl, afid ) via numerical integration

tems, such as, Gutzwiller’s trace formyl&] compute the Using an exact trace formula for the density of states. The
density of states results of the three methods agree. This proves the validity

and convergence of our approach. In Sec. V we summarize
* our results and conclude the paper.

p(k)=2, alk=k)), @
: Il. DRESSED QUANTUM GRAPHS
from which individual energy levels are extracted indirectly
as the singularities gb. In a chaotic system the only avail-
able classical input are the periodic orbits of the system an
the density of state€) is computed according tdl]

A quantum graph consists of a quantum particle whose
otion is confined to a one-dimensional network M§
ondsB;; connectingNy, verticesV; . An example of a graph

with six vertices and ten bonds is shown in Fig. 1. The to-
o pology of a given graph is fully characterized by its connec-

— 1 . L .
p(K)~p(k)+ ;ImE Tp(E)E AY(E)e vS(E), (3)  tivity matrix Cj;
p v=1

_ {1 if Vi and V; are connected
Here p(K) is the average density of states,(E), T,(E), Cij=C;=
and A,(E) are correspondingly the action, the period, and
the weight factor of the prime periodic orbit labeled py . .
and v is the repetition index. Again, the scherf® is not ~ EVery bondB;;, which connects the verticeg; and Vj,
usually exact. More seriously, however, in contrast to @y, SUPPOrts a solutioy;;(x) of the Schradinger equation
it fails to produce individual energy levels in the fornic,,
= ... ." The difference between Eql) and Eq.(3) cannot
be emphasized enough. While Ed) allows us to “pick and

0 if they are not.

q 2
(—i&_Aij) ij () =E g (x). ®)
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V4 (a)

Va
a a1 Gz a3 a4 as Gp_1 Gy,
FIG. 1. A generic nonplanar graph with six vertices and ten
bonds. (b)
Here O<x=L,; is the coordinate alonB;; measured fronv; Vi VW W v
to Vj, andL;;=L;; is the length of the bond. A constant, . A AR PPN

real, skew symmetric matrid;;= —A;;, which plays the e of h ) _
role of a magnetic field vector potential, is sometimes intro- " 'G- 2. An example of dManhattan step potentiala) and its
duced as a tool for braking the time-reversal symmetryassouated linear graptb). Also shown is a non-Newtonian peri-
which. in turn. is known to affect the statistics of the level odic orbit characterized by six above-barrier reflections.
distribution[8,9].
In this paper we generalize the Sctiimger operator in

Eq. (5 by adding potentialdJ;;(x,E) on the graph bonds.
We call this generalization “dressing of the graph.” While, in

Aij<1, 8

or a combination of the tunneling solutions

general, the potentials);;(x,E) may depend on the bond i (X) = ayjexp (— Bijk+iA;)x]+bj;exd (8 k

coordinatex and the energ¥ in an arbitrary way, we restrict _

ourselves here to thecalingcase +iAipxX],  A>1, 9)
U (E)=N\iE,  Nj=)\j, (6)  where the factors £;k) Y2 in the propagating wavetd)

were introduced to ensure proper flux normalizat[dd].
which allows us to introduce physical parallels betweenDue to the scaling assumption, there is no transition between
quantum graphs and ray-splitting systefi®—13. A quan-  these two cases as a function Bf From now on we shall
tum graph with the potentialés) on its bonds can also be assume that the enerdyis kept above the maximal scaled
viewed as a generalized step potential, such as, the onstential height
shown in Fig. 2a). These potentials were studied earlier in
great detail in connection with Anderson localizatif8]. Nij<1, i,j=1,... Ny, C;#0, (10
Potentials of this type can be represented by a linear graph, | ) ) .
such as, the one shown in Figlb2 Scaled potentials, such which will allow us to exclude the tunneling solutio(®. At

as Eq.(6) cast the Schidinger equation into the form every vertexV;, the bond wave functions satisfy the conti-
nuity conditions
_d 2 o
_|&_Aij> i (X) = BF Edhij (%), (7) Pii(O)x=0=@iCij, 1,j=1,... Ny (13)

] and the current conservation conditions
where the paramete;&zj =1-\;;, Bij=p; are defined on

the corresponding bonds; . Ny d

Depending on whether the energy- k2 of the particle is E Cij( —i d__A” ) z,/fij(x)|X:O= —iNioi,
above or below the scaled potential heighf(E), the solu- =1 X
tion of Eq.(7) on the bondB;; is either a combination of the

free waves i,j=1,... Ny. (12)

. . Here ¢, is the value of the wave function at the verte,
dij(X) =a;; expli(— Bijk+ Aij)x] +by; exXpLi(Bik+ Aij)X] _ and the\;'s are free parameters of the problem for which the
! ! VBijk J VBijk scaling is introduced as
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N=1k. (13)  Here off}((k) is the matrix element of the vertex scattering

N _ ~ matrix o(k), which distributes the incoming flux on bond
The conditions(11) and (12) are consistent only for a dis- Bj into the bondB;;. The wave functiony;(x;) on the
crete set of wave numbekg, which defines the spectrum of pgonq B is a superposition of the partial waveé20) with

the quantum graph problem. Singg (x) and i;(y) repre- amphtudesa”, corresponding to the incoming flux on the
sent the same wave function on the bond connecting thBondB towards the vertey; , i.e.,

verticesV; andV; (the only difference is that is measured
from vertexV andy is measured from vertey;), we have

&y (Li; —X) = i (%). (14

Using Eq.(8) we obtain Using the representatidB) of ¢;; in Eq.(21) and comparing
coefficients yields

i (X)) = Za., P (x)). (21)

w"(L"_X):a.. exl{i(—ﬁijk+A“)(Lij_X)] |
ji(Lij ji W bij:? Uft},aij,. 22)

by XL (Bijkt Aji)(Lij =] _ Ui (X). Substituting Eq(20) into the boundary conditions, we obtain
VBijk the vertex scattering matrix
(15 =
icients. ) i oM =l =| -8 +———- B”B” C;Cyj (23
Therefore, the coefficients;; andb;; are related according i jisij iy’ i
tO | I
— ; with
aji=bjexdi(Bik+A;)L;]
. Ny
b“:a”equ(_B”k‘FA”)L”] (16) vizz BI]CI] (24)

The coefficientsa;; and a;;, (bj; and b;;) are considered

different. This implies that the bonds of the graph are di-we see that, in the scaling case, the matrix elemeﬁts of

rected. Equationgl6) can be written in matrix form as the vertex scattering matrix(") arek-independent constants.
-~ The matrix eIementr}'} has the meaning of the reflection
a=PD(k)b, 17) coefficient from the verte¥; along the bond;;, and the

elementsaJ ‘., j#]' are the transmission coefficients for

wherea andb are the Ng-dimensional vectors of coeffi- : :
transitions between different bonds. Equati@®) can be

cients,D is a diagonal matrix in the I3 X 2Ng space of

directed bonds, and written as
0 I, b=Ta, (25)
P= , (18
1NB 0 where
where JNB is the Ng-dimensional unit matrix. Explicitly we F= le om=6nCi CnmU, ) | 26
have
= Equations(17) and(25) together result in
Dij pa(K) = SipdjgeXdi (Bij K+ Ajj) Lij . (19

o N a=s(k)a, 27)
The pairs of indicesif), (pq), identifying the bonds of the
graph T, play the role of the indices of the matrR(k).  whereS(k) (the total graph scattering matyiis given by
Alternatively the wave function can be written as a linear
combination of plane waves scattering ®f. An incoming S(k)=D(k)T (28
wave with normalized flux on the bor;,; gives rise to a _ _
partial wave contribution scattering into bog according andD=PDP andT=PT. The consistency of the system of

to linear Eqs.(27) requires the spectral equation
w"’(x) 5 exdi(— Bijk+A;)x] A(k)=def1-S(k)]=0 (29
VBijk to be satisfied. This condition defines the set of allowed mo-
menta{k,}.
o exdi(Bijk+Aij)X; ] (20) The density of the momentum states of the dressed quan-
7y VBijk tum graph is given by
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p(k)zngl S(k—kp), (30)

where thek,’s are the solutions of Eq(29). An exact
periodic-orbit expansion fop(k) can be obtained directly
from the spectral Eq.29) as follows[3—7]. The logarithmic
derivative of Eq.(29) is singular at each one of its roots.
Between roots, the phase of the spectral determinant varie:
slowly such that :

p(K)=p(k)— %Iim Imdikln def1-S(k+ie)]. (31)

e—0

Using the well-known identity3—7]

Inde[l—S]z—Tr§ ES“ (32 . - .
n=1 n ! i Ly Va L, Vs
FIG. 3. A scaling step potentigktop), equivalent to a three-
vertex linear graphbottom), as an example of a regular quantum
1 d =1 graph. A Newtonian £R) and two non-Newtonian4,R) periodic
p(k)=;( k) +—lim |ma< 2 —Tr[S(k+i€)]". (33 orbits are also shown together with théir- R codes.
r n=1 N

e—0

we obtain

odic orbits increases exponentially with their lengtftus,

Since the matrix indices of E¢28) correspond to the verti- equivalently, the number of scattering eventéth a rateA
ces of the graph, the trace of thth power of the scattering that depends only on the topology of the graph. Since the
matrix can be interpreted as a sum over all closed, connectgshase space of the system is bounded, the dynamics of such
sequences consisting nfoonds[3-7]. Classically, these pe- a particle is mixing3].
riodic connected sequencesrobondsB;; correspond to the Since we are focusing on the casg<1, most of the
periodic orbits traced by a point particle moving on theclassical periodic orbits on a graph are above-barrier reflec-
graph. Geometry and proliferation properties of the periodiaion orbits as illustrated in Figs. 2 and 3. In the context of ray
orbits are determined completely by the topology of thesplitting these orbits are also known as non-Newtonian orbits
graph. [15—-17. The inclusion of all non-Newtonian orbits in our

The behavior of the periodic orbits on graphs exhibits theperiodic-orbit expansions of individual eigenvalues dis-
typical features of chaotic systems. The meaning of classicalussed below is crucial for rendering these expansions exact.
chaoticity on graphs is well defined, as demonstrated in the Traversing the bond®;; contributes the amount
following. A classical graph system consists of a grapand
a point particle moving along its bonds, which scatters elas-
tically at every vertexV; along the direction of any of the Sij= fB__(,BiijrAij)dX (39
bonds emanating from this particular vertex, with different !
probabilities. The probability amplitudes for every scatteringto the total action of the trajectory traced by the particle.
channel can be obtained in the short wavelength limit fromThese actions appear in the phases of the exact wave func-
the quantum-mechanical transition amplitudes defined at ewions (8). This connection means that the semiclassie#l
ery vertexV; by the corresponding scattering mato'rf{}, .In konal) form is exact for the quantum graph wave functions.

the scaling case, the matrix eIememl‘éf, arek-independent More importantly, the amplitudessii determine the matrix

constants and thus do not dependfoat all. Therefore, the D(k), and hence the scattering mati$(k). As a conse-

same matrix elements determine both the quantum and tH#ience, the “closed bond sequence expansi@$) can be

classical scattering probabilities. written explicitly as a periodic-orbit expansion in terms of
For every given grapl the global average rate of expo- the phase$35)

nential proliferation of periodic orbits, the topological en-

o — 1 A
Py A, 15 given by p(0=p(k)+ —ReS, Ty 3 Are'SK,  (36)
p v=1

A= Iimw, (39

I Where~Sp is the action of the prime periodic orbit com-

posed of the partial actior§; of Eq. (35) accumulated along
wherel characterizes the length of the periodic orlitsr  the periodic orbifp, andTp(k)=d~Sp(k)/dk. The first termin
instance their code lengthand (1) is the total number of Eq. (36) describes the average behavior of the density of
periodic orbits of length<I. The number of possible peri- states while the second represents the fluctuations around the

| — oo
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average. The amplitude of every periodic ogbtontains the is the total phase of the spectral determinant,@hs in Eq.
constant factor expg;;A;L;;). This factor can be absorbed (42) are linear combinationgsums and differencg¢f the
into the weight factoA,,. Thus, defining the reduced classi- Phases(k) and Nc=4"s/2. Evaluated directly, the spectral
cal bond actions determinant is a polynomial of thecompleXx matrix ele-
ments(19) with coefficients that are determined by the ma-
SC} = BijLjj (37) trix elements(26). Factoring out the total phagd3) of this
polynomial, we obtain the spectral equation in the form
and the total reduced actitﬁg accumulated along the peri-

odic orbitp cog Sok— myo) =P (k), (44)
ng > Sﬂ , (39) where
ij along p
Np
the final periodic-orbit expansion for the density of states for o (k)= E a; cog Qk— ;). (45
=1

scaling systems can be written as

. 1 * o Here, based on the reduced bond actions defined if3&y.
p(K)=p(k)+ ;ReZ 832 Arel TSk, (39  S3=3;C;;S] is the total reduced action length of the graph,
Pt the frequencie€);<S) are sums and differences of the re-
In contrast with Eq(3), the expressiof89) for the density of ~duced bond actionS andy,, y; are constants. For a gen-

states is exact; the action Iengtﬁg and the weight factors €ral graphl it is difficult to calculate the precise number of
A, arek-independent constants. cos termsNy in Eq. (45). But an upper limit is given by the

The staircase function number of possible linear combinations of tNg reduced
bond action§?j . Since there are

N(k)= 2, ©(k—ky) (40 ( B)

n=1 210

J

is obtained by direct integration of E(0). Using Eq.(39),
N(k) can be expanded as ways of pickingj actions out ofNg possible ones and com-
1 bining them with “+” and “ —"” signs, we obtain

N(k)zN(k)—;!erl)ImInde[l—S(k+ie)] Ne  (Ng Ng
Np<=> 2| T |=—1+>
=1\ =0

_ A
=N(k)+%lm2 S CPaivsk (41) (46)
p

v=1 V

Ng\| _
. |211Ne=I=3Ns—1,
]

A graphT is calledregular, if the condition
Just like Eq.(39) this expansion is exact. The first term rep-
resents the average behavior of the staircase; the second term Np
describes the fluctuations around the average. > lal=a<1 (47)

IIl. REGULAR QUANTUM GRAPHS AND EXPLICIT

is fulfilled. In case the conditiofd7) is satisfied, the spectral
SPECTRAL FORMULA

Eq. (44) can be immediately solved to yield the following
Since the scattering matrig28) is a unitary matrix, its Implicit equation for the eigenvalues:
eigenvalues have the forep=e'%") . Therefore, the spectral

. . T
determinan{29) can be written as knzg[n + 1+ vol

2Ng 2Ng 2Ng
AR =]] [1-€t®0]=| 1-D eit‘h(k).;_....;_eiz1 9|(k)] 1 [ arccosd (k)] for n+u even
=t =t | 7—arccosd (k,)] for n+pu odd,
Ng—1
=2e'%M)| cog @y(k) ]+ >, (—1)icos{®j(k)]}, “9
i=1

where i is a fixed integer, chosen such that is the first
(42 positive solution of Eq(44). Equation(48) implies the exis-

where tence ofseparating points

2Ng o
Oo=3 2 6i(K) (43 k=g at ot D) (49)
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in the spectrunk,, of Eq. (44). Because of Eq47) the points  resentation of the roots, of the spectral Eq29) in terms of

k, are never solutions of Eq48). They act as separators the geometric characteristics and the classical properties of
betweenk,, andk,. ;. Since the second term in E8) is  the graph.

bounded byn-/58, the deviatiorikn—ﬁn| never exceedslsg In Ref.[18] a mathematical proof is presented, which as-

, - ) sures us that Eq54) converges. In addition it is proved in
for anyn. We emphasize, that the separatoysio not coin-  pef [1g] that Eq.(54) converges to the exact spectral eigen-

cide with the average valuds of the rootsk, . The explicit  values. Both convergence, and convergence to the correct
decomposition of the roots, into an average pak, and a  results are illustrated with the help of a specific example in
fluctuating parik, , kn:?nJr”kn, can be obtained from the Sec. IV. Itis also proved in Ref18] that the serieg54) may

following equivalent formulation of Eq(48): only be conditionally convergent. This means that for proper
convergence the ordering of the terms in Esf) is impor-

- 1] (—1)"t# T tant. Proper convergence of E&4) is obtained if the terms
knzg T 2 +T[ arccog® (kn)]— E]' in Eq. (54) are ordered according to the code lengths of the

periodic orbitd 18]. In other words, the sum in E¢b4) is to
(500 be extended over all periodic orbits with code lengths

. . maller than or equal t which yields the approximation
This form ofk,, together with the boundedness of the secon (1) tok,,. Then, on the basis of the results obtained in Ref.

term in Eq.(50) proves rigorously thaN(k), p(k) are of [18], we have lim_..k,(1)=k, . This means that Eq54) is

the form exact. It is important to note here that the ordering of terms
0 — in Eq. (54) is not according to their action lengths, but ac-

N(k) = §k+ﬁ(0) (k)= dN(k) _ % (51) cording to the lengths of the code words that code for the

™ ' dk ™ periodic orbits. This is intuitively understandable, since the

code length is connected to the powerof the S matrix in
Since® (k) contains only frequencies smaller tha®) every Eqg. (33) according td =n/2.
open interval ,= (k,_1,k,) contains one and only one root,  The expansiori54) provides an explicit representation of
i.e. k,. Moreover, if Eq.(47) is fulfilled, the allowed zones the roots of the spectral equati¢R9) in terms of the geo-

Z,Cl,, where the rootk,, can be found, narrows down to Metric characteristics of the graph. In a similar way one can
obtain explicit expansions for any power of the energy levels

- - k' or any function of the eigenvaludgk,).
kneZ,= g(n+,u,+ Yot u),g(n+,u+ Yot1l—u)]|,

(52 IV. EXAMPLES
whereu=arccosf)/S). Correspondingly, there exist forbid- The coefficientsA, in Eq. (54) assume a particularly
den regionR, simple form in the case of linear graphs witho=0, i
=1,... Ny. Both the vertices and the bonds of a linear
T T graph can be naturally labeled by means of a single index
an(g(”ﬂ”70“‘“)’%(”*/“70“*“) ’ such that By,=B;, By3=By, ... By, 1n,=Bn, 1

(53)  (see Fig. 2 The scaling coefficients for the momentum of
the particle are correspondingly B8;.,=p81, B23

where roots of Eq(48) can never be found. Note that, =82, - -, Bn,-1n,=Bn,-1. the bond lengths ard ;,
eR,. Inthe limta—1 (u—0), the width of the forbidden =L,, L,s=L,,... Ly —1n =Ln. —1, the potentials are
. . . ’ \ IV v
regionR, shrinks to zero, and the allowed zoAg occupies  y, ,=U,, U,s=U,, ... Uy _1n=Un ;1 and the re-
the whole root intervaly . duced bond actions are S =S°V=,8 Ly, $5=S
The existence of the separating poifd®) is the key to . < P 1.2 Ll =1 '3;[._ I
obtaining the explicit form of the periodic-orbit expansion _'82. 20 N LNy T Oy 'Bijl Ny 1 TESPECTIVElY.
for individual rootsk,, . Multiplying both sides of Eq(39) by  In this case, if a prime periodic orhit undergoesr, reflec-
k and integrating fronk, ; to k,, we obtain tions from a vertexV; and 2}, transmissions through it, the
weight coefficient in the expansid89) is [17]
. or
R = 1 - e'"Spkn .
kn=kn— 50— —ReX > A’ [(1—9,—'”%)
2S5y m™ F =1 v o 2
_ Ap=11 r’ra—r3m, (55)
x | ik ! L e ) (54) |
ik,— <0€ 7Py,
n @g SO

_ wherer; is the reflection coefficient from the vert&, and
where we used Ed51) for the integral ovekp and defined the product is taken over all the vertices encountered by the
wp:wsg/sg. Since all the quantities on the right-hand sideorbit p. If a particle reflects from the verte¥; traveling
of Eq. (54) are known, this formula provides an explicit rep- along the bond;, the reflection coefficient is
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TABLE |. Successive approximations of the eigenvallaggfirst row), kqo (second row, andk,qq (third
row) of a specific scaling step potenti@ee text for detai)sas a function of the code lengtticolumns 2—5.
The exact values ok, kip, and kigq are listed in column 6. Column 7 lists the absolute errors
|k,(I=20)—k,| for n=1, 10, and 100.

Root I=5 =10 =15 =20 Exact Error
kq 4.11608 4.11653 4.10721 4.10513 4.10715 0.00202
K1 39.28658 39.29807 39.30730 39.30521 39.30521 0.00000
K100 394.94770 394.95647 394.96622 394.96456 394.96471 0.00016
Bi-1i—Bi . We illustrate the method and the convergence of the series
ri:m' i=2,...Ny=1, rp;=-1, ry=-1 expansion54) with the following concrete, dimensioned ex-
i—1 i

(56) ample of the scaling step potential of Fig. 3. Choos_lng
=0.3, \q=0, and A\,=1/2, we computed the solutions
We assumed Dirichlet boundary conditions at the left andky, Kig, andkygo of Eq. (59) using three different methods:
right dead ends of the graph. The reflection coefficienti) exact numericalii) explicit periodic-orbit expansio(b4)
changes its sign if the reflection happens from the side of thef the individual eigenvalues an@i) numerical integration
bond B, ;. If, for a given orbit, the total number of reflec- using the Smatrix representatior(33) of the density of
tions withr;<0 is x,, then states. Addressin(@) we obtained the exact numerical values
of the three selected roots of E¢G9). The result isk;
=4.107 149, k0= 39.305 209, andk,po=394.964 713.
Turning to methodii) we recomputed these three eigen-
values using Eq(54) directly including progressively more
The two-vertex linear graph is trivial and corresponds to goeriodic orbits in the expansidi®4). The result is presented
guantum particle in a square-well box. A quantum particlein Table | that shows the values kf, k;qandk;,,computed
moving in a scaling step potential as shown in Fig. 3, giveswith Eq. (54) including periodic orbits coded by binary
rise to the simplest nontrivial graph, the scaling three-vertexvords of lengti =5, 10, 15, and 20, respectively. This cor-
linear graph, shown on the bottom of Fig. 3. In this caseresponds to including 23, 261, 4807, and 111 321 periodic

Ap=(= 10T [ 7a(1-r?)". (57)

there is only one nontrivial reflection coefficient orbits in the expansioni54), respectively. We observe that
the accuracy does not improve monotonically, but that there
. _B1— B2 (58) is a definite overall improvement of accuracy with the code
,=

Bit+ By’ length. As a matter of fact, as discussed above and shown
mathematically in 18], the serieg54) converges, and con-
All the periodic orbits of the three-vertex linear graph shownverges to the exact results kf in the limit of | — .
in Fig. 3 correspond one to one with words formed from a Turning to methodjii) we note that due to the exponen-
binary code with two lettersC and R [17-19, where £ tial proliferation of periodic orbits, it becomes progressively
stands for a reflection of the orbit off the leftmost vertex more difficult to compute the codes of longer periodic orbits.
(left-hand potential wa)l and R stands for a reflection off Nevertheless, with the help of a numerical procedure, we are
the rightmost vertexright-hand wall. Thus theZ, R code able to illustrate the convergence behavior of Esfl) for
is unigue and complete. For this system the spectral equatiacode lengths much longer thas 20. Starting from Eq(33)
is we compute theS matrix numerically and perform all the
steps leading up to Ed54) numerically. In particular, this
Sin(Sgk) — 1, sin(Q;k) =0, (590 method involves numerical computation $matrix powers
and numerical integration ovée Within any given level of
where S{=S]+S; is the total reduced action of the graph numerical accuracy this method is completely equivalent to
andQ,=S)—S). With a;=r, andy,=y,= /2, Eq.(59) is  the method of summing the orbits, but allows us to extend
of the form (44), (45) and the number of cos terms (k) the computations such that we effectively include all periodic
(in this case one terrcomplies with the estimatél6). Be-  orbits up to code length=150. This corresponds roughly to
cause ofr,|<1, itis the spectral equation of a regular quan-2%°°=1.4x 10* periodic orbits, since the periodic orbits on
tum graph. Using the explicit forrtb7) of the coefficientsA,  the three-vertex linear graph are coded by a binary code.
in the expansiori54), we obtain the explicit series expansion This estimate is substantiated by an analytical estimate of the
for every rootk,, of Eq. (59). Thus the spectrum of the scal- number of periodic orbits. For the three-vertex graph the
ing step potential shown in Fig. 3 may be calculated explicperiodic orbits are binary necklaces over the two symlgols
itly and analytically with the help of Eq54). This by itself  and R [18]. The number of binary necklaces of lengthis
is a considerable advance in the theory of simple onegiven by[22]
dimensional quantum systems, which up to now could only 1
be solved using graphical or numerical techniques N = /in
(1420 21 M=~ 2/ $(m2"", (60)
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1000

FIG. 4. The deviatiorg = |k, (1) —k,|/k, of the exact eigenval-
ues fork,, kip, andk,q from the corresponding values obtained

via the series representation, as a function of the lenigtifsthe
periodic orbits.

where the symbol fi|/” denotes “n is a divisor of/,” and

¢(n) is Euler’s totient function defined as the number of

positive integers smaller than and relatively prime ton
with ¢(1)=1 as a useful convention. An upper limit faris
obtained if we use Eq60) in the case wherg” is a prime
number. In this casé0) reduces to

1 1
Mp)= 5[¢(1)2p+ ¢(p)21]=5[2p+ 2(p—1)], (61)

where p is prime. Thus, in the limit ofp—o we have
Mp)—2P/p, and therefore,

A= lim _|n[/vp(p)]

p—co

=In(2). (62

Thus, according to this estimate, the total number of periodic

orbits of length 150 is again

M150)~ !0 = 2150 (63)
We also computed numerical estimates\ofUsing the exact
formula (60) for counting periodic orbits in Eq(34) and
including periodic orbits with code lengths of up to

PHYSICAL REVIEW EG65 046222
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FIG. 5. Parameter space,(,r;) of a four-vertex linear quantum
graph. Parameter combinations in the shaded region correspond to
regular quantum graphs. This demonstrates that the subset of regu-
lar quantum graphs within the set of all four-vertex linear quantum
graphs is nonempty and in fact of finite measure.

The error is seen to decrease on average as a function of the
increasing periodic-orbit length From Fig. 4 we obtain ap-
proximately €, = |k,(1) — k,|/k,~1/1? on average.

For a four-vertex linear graph, the spectral equation is

sin(SSk) =r45SiN(Q 1K) —ror3Sin(Q,k) +r,sin(Q3k),
(64)

where SH=50+S+33, 0,=50+-S3, Q,=5-S)
+33, 0;=50-S)—S andr,, rj are the reflection coeffi-
cients at the verticed/, and V;, respectively. Withy;
=7/2, 1=0,1,2,3, this spectral equation is of the fo(A#),
(45) and the number of cos terms #(k) (three in this case
complies with Eq(46). For

ral+[rorgl+]rf<1 (65)

the four-vertex linear graph is regular. In this case the energy
values of the four-vertex linear graph may be calculated ex-
actly using the periodic-orbit expansidB4). According to
Fig. 5 the set of ,, r3 values that fulfill Eq(65) occupies a
diamond-shaped area bounded by the functiogs = (1

=1000, we foundA>1.987, consistent with the estimate —|r,|)/(1+]|r,|). This observation proves that regular quan-
(62). For =150, relevant for our numerical example, the tum graphs are an important, finite-measure subset of quan-

asymptotic regime is not yet reached and we find

~|n(1.943). This value foA can be used for a more refined

estimate of the number of periodic orbits of length

tum graphs.
The set of regular quantum graphs is much wider than the
three- and four-vertex quantum graphs discussed in detail

=150, M150)~1.943°0~2x 10%. Clearly, computing the above. Since, as indicated by E¢S9) and (64), the ampli-
codes of that many periodic orbits and summing them up inudesa; in Eq. (45 involve products of vertex reflection
Eqg. (54) is beyond the storage capacity and power of anycoefficients, and since the vertex reflection coefficients of a
currently existing computer, but is apparently no obstacle tdinear quantum grapkvia proper choice of the bond poten-
the numerical simulation of that many periodic orbits in-tials) are free parameters of the quantum graph, a finite-
cluded in Eq.(54). Figure 4 illustrates the rate of conver- measure set of regular quantum graphs existafgrgiven

gence of the eigenvaluds;, kg, andk;q, obtained with
method(iii) as a function of code length=150. Shown is
the relative errore, = |k,(l) —Kp|/k, for n=1, 10, and 100.

linear graph. It is possible that more complex graph topolo-
gies, such as, rings and stars, may also admit a set of regular
quantum graphs. This topic is currently under investigation.
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V. DISCUSSION, SUMMARY, AND CONCLUSION quantum graphs definitely qualify as quantum chaotic sys-

In this paper we defined and studied a subset of uanturtﬁems’ .e., systems chaofic in the classical limit,
pap q A more delicate point concerns the derivation of Egf)

graphs: regular quantum .graphs. R‘?gu'.ar gquantum grapl’b%, integrating the fluctuating part in E€9) term by term.
satisfy the regularity condmo_(:47), which 'mp"es that the Since the resulting periodic-orbit expansion may only be
roots of the_ spectral equation are confined fo regularlyconditionally convergent, this is reason for concern. We ad-
spaced root intervals. One and only one root is found pe

. ) L Oressed this point from a rigorous mathematical point of
root interval. This property allows us to derive rigorous, con-

. C ) ; L view in [18]. We were able to prove rigorously that the in-
verging periodic-orbit expansions for individual energy lev- terchange of integration and summation in thiategral of
els of regular quantum graphs.

We often hear the comment that the expangif) for k, kp(Kk) is allowed. Thus, term-by-term integration of E§9)

cannot possibly converge, since Eg9) is divergent. This Is justified, validating the final resufb4).

comment is invalid. There is a fundamental difference be- To our knowledge this is the first time that the energy
tween Eq(39) and Eq.(54). Equation(39) is a periodic-orbit levels of a class of classically chaotic systems are expressed

expansion of the kernel of a functionéd series of Diracs one by one with the help of convergent periodic-orbit expan-
“fu%ctions“) whereas Eq(54) is a periodic-orbit expansion sions. Studying specific examples of regular quantum graphs
of a simplec number. On the level of Eq39) the concepts we proved that the class of regular quantum graphs is not

of convergence or divergence are nat even defined Or”empty; it is in fact an important finite-measure subset of
after multiplying Eq.(39) with a test functior{23] and inte- &uantum graphs. The explicit formulas of individual quan-

grating overk, are the concepts of divergence and conver—tum energy levels obtained in this paper remind us of the

ence defined. In this sense even &) is convergent. This Einstein-Brillouin-Keller(EBK) method[ 1] for the quantiza-
) ined. ' ve IS convergent. 1IS 41 of integrable classical systems. But there are important
is also known as convergence in the distribution s¢28

and leads to proper convergence in the usual sense of ei_ifferences. Regular quantum graphs do not correspond to
prop 9 lassically integrable systems. In fact, due to the importance

ementary undergraduate-level analysis. Thus, the CONVELt non-Newtonian periodic orbits, the number of classical
gence of Eq(54) is no longer a mystery.

. periodic orbits proliferates exponentially with the code
Another more serious comment concerns the sense i

and bonds. Therefore, a dynamical Liapunov expoh&2d]
cannot be defined in the traditional sense of exponentiall
diverging initially close trajectories. As explained [3],

however, this is no obstacle to associate a classical pha:

our examples, the scaling step potential discussed in Sec. IV,
Yve computed estimates of the topological entropy analyti-
cally and numerically. In both cases it turned out to be posi-

Iive and close to In(2). This proves that, at least for the cases

Zpﬁgfnivn\:/:ri]nafch?:aw:srg grzp():: ?snriiio[%hcl)\/l\l\:)rtgg\t/é?e ans_s'cgkudied, the classical limit is chaotic. Another difference to
y > P P '  d EBK theory is that the periodic orbits in regular quantum
tum graphs fulfill another property of quantum chaos, the

exponential proliferation of classical periodic orbits as mani—graphs are not confined to phase-space tori. Finally, in con-
P proiire ; P trast with EBK theory—a semiclassical theory that does not
fested by a positive topological entroggee Secs. Ill and

IV). Therefore, quantum graphs have been called ,‘paraysually return exact results—our formulas are mathemati-

; i o cally exact. In summary, despite the apparent complexity and
digms of quantum chaod7]. Inasmuch as the positive to- ; : X S .
poglogical qentropy is cosr[lc]erned regular quair)num gralohexponentlal proliferation of the periodic orbits of regular

ualify as quantum chaotic systems. Regular quantum gra uantum graphs, the organization of the roots of the spectral
q q ystems. Reg “ d 9 P%quation into regularly spaced intervals makes it possible to
do not show all the characteristics of “fully developed

. : inpoint every single energy eigenvalue of a regular quantum
uantum chaos. For instance, due to of the existence of 2 ) o
?orbidden zoneR, (see Sec. Il they definitely do not show Sraph analytically and exactly by an explicit, convergent
n .

a Wignerian nearest neighbor statistics. We do not believgerIOdIC'orblt expansion.
that this is a problem, since there is no universally accepted
rigorous definition of quantum chaos that requires “Wign-

erian statistics” as one of the necessary conditions. The only
broadly accepted criterion is that “quantum chaos” deals

with quantum systems that are chaotic in their classical limit. Y.D. and R.B. gratefully acknowledge financial support
Based on this criterion, together with the mixing propéBy by NSF Grant Nos. PHY-9900730 and PHY-9984075; Y.D.
and the positive topological entroggee Sec. IV, regular  and R.V.J. were supported by NSF Grant No. PHY-9900746.
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